

The combined portfolio of Process Insights' powerful analytic instruments for analysis of fuel-cell-grade hydrogen offers:

- Combination of three powerful analytical technologies: Cavity Ring-Down Spectroscopy (CRDS), Mass Spectrometry (MS) and Gas Chromatography (GC)
- Analysis of all critical contaminants listed in hydrogen purity standards SAE J2719 and ISO 14687:
 He, N₂, Ar, CH₄, H₂O, O₂, CO, CO₂, CH₂O, CH₂O₂, NH₃, sulfurs, and more
- Ideal detection limits from part-per-million (ppm) down to sub-part-per-billion (ppb) in line with requirements outlined in ISO 21087

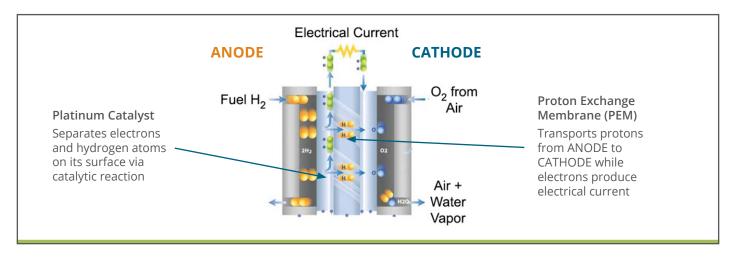
The Easy Way to Ensure Hydrogen Quality

Hydrogen quality is vital for the performance and lifetime of hydrogen fuel cells. There are many critical contaminants for this application, causing many potential issues, including performance reduction, degradation of the proton exchange membrane, or damage to the catalyst. Tiger Optics and Extrel offer powerful analytical tools for the measurement of trace amounts of these molecules. The instruments' ppm- and ppb-level detection limits help ensure compliance with SAE J2719, ISO 14687 and similar purity standards designed to protect fuel cell electric vehicles (FCEVs).

Based on powerful Cavity Ring-Down Spectroscopy (CRDS), all Tiger analyzers are free of drift, guaranteeing consistent and reliable trace detection for fuel-cell-grade hydrogen in the lab and in the field. Highly specific to the target molecule, CRDS also eliminates cross-interferences. Plus, there is no need to perform costly and time-consuming zero and span calibrations, saving both time and money with continuous, online service.

Tiger Optics' high-performance CRDS analyzers are used in many demanding measurement applications from ultra-high purity electronic gases for semiconductor manufacturing to industrial and medical gases. Tiger has also been working for many years with regulators, researchers, and gas manufacturers to develop measurement solutions for fuel-cell hydrogen analysis. CRDS's versatility makes it possible to use the instruments both in the lab and directly at fueling station, and anywhere along the supply chain, from manufacturing to transportation.

Extrel's quadrupole mass spectrometers (MS) are geared for ultimate performance and allow the detection of multiple contaminants within seconds. With decades of excellence in industrial automation and thousands of installations worldwide, Extrel process mass spectrometers provide the rugged stability and ease-of-use necessary for continuous operation in demanding, mission-critical environments. Offering complete quantitative stream composition measurement, total application coverage, and low cost of ownership, Extrel delivers performance specifications superior to other mass spectrometers and commercial process technologies.


Based on cutting-edge quadrupole mass spectrometer technology, the MAX300-LG has the dynamic range to measure component concentrations from 100% down to the low parts per trillion (ppt). It provides a full composition update every few seconds to measure changes in dynamic chemical processes. The MAX300-LG has the flexibility and rugged stability necessary for real-time quantitative gas analysis in applications as diverse as catalysis R&D, ambient air monitoring, and bioreactor process control.

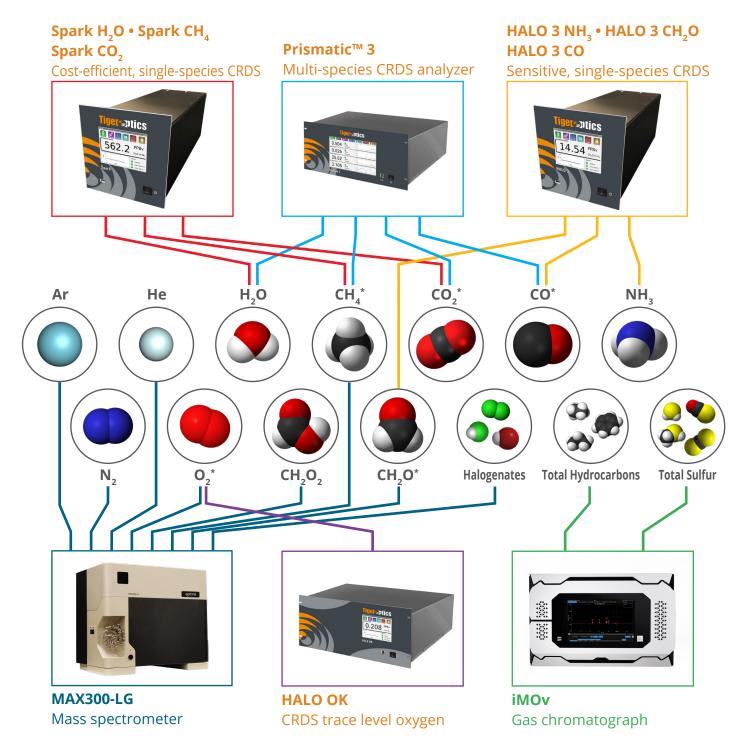
Fuel Cells and Hydrogen Purity

High-purity hydrogen is crucial to the performance and lifetime of fuel cells. The critical components of the fuel cell are the platinum catalyst and the proton exchange membrane (PEM). Both can experience significant loss in performance or even irreversible damage in the presence of contaminants on the anode side (hydrogen side) of the fuel cell.

Principle of a PEM Hydrogen Fuel Cell used in FCEVs

Effects of contaminants in Hydrogen on the Fuel Cell Anode

Helium (He), Nitrogen (N ₂), Argon (Ar)	Dilute hydrogen fuel, compromise performance
Methane (CH ₄), Hydrocarbons	Degrades performance of catalyst
Moisture (H ₂ O), Oxygen (O ₂)	Cathode-side molecule, impedes efficiency of fuel-cell reaction ($2H_2 + O_2 \rightarrow H_2O$)
Carbon Dioxide (CO ₂)	Reduces to CO and adsorbs to catalyst
Carbon Monoxide (CO)	Adsorbs onto catalyst and severely degrades performance, difficult to recover
Formaldehyde (CH ₂ O), Formic Acid (CH ₂ O ₂)	Reacts with catalysts, degrades performance
Ammonia (NH ₃)	Impedes conductivity of membrane, significantly affects performance, recoverable
Sulfur Compounds (H ₂ S, COS, CS ₂ ,)	Adsorbs onto catalyst and severely degrades performance, NOT recoverable


Hydrogen Purity and Measurement Standards

Most countries have adopted the fuel cell hydrogen purity standard SAE J2719, developed by the Society of Automotive Engineers, which sets limits for the species listed above, as well as several other critical contaminants. The purity specifications were also adopted by international standard ISO 14687.

Tiger Optics has worked with ASTM International to create a standard test method for the analysis of fuel-cell hydrogen using CRDS to allow users to take advantage of this powerful analytical method for this application. The standard was finalized in 2014 and is designated as ASTM D7941/D7941M.

Products for Hydrogen Purity Analysis

Process Insights offers six different, versatile CRDS, MS and GC platforms for single-species or multi-species detection of critical impurities in fuel-cell-grade hydrogen to assure SAE J2719/ ISO 14687 compliance.

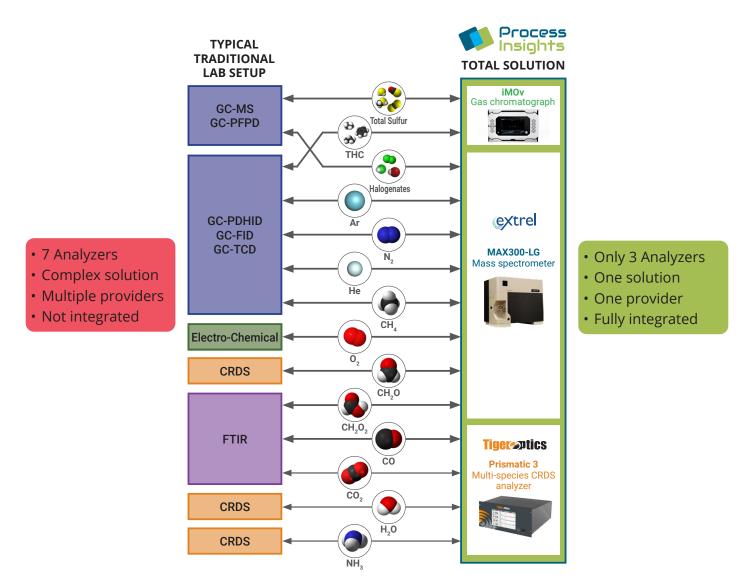
^{*}For CH₄, CH₂O, CO, CO₂ and O₂ detection, you can choose between dedicated single-species Tiger Optics CRDS analyzers (Spark, HALO 3 and HALO OK), the multi-species Prismatic 3, or the Extrel MAX300-LG mass spectrometer. The recommended analyzer combination depends on your specific requirements. Please contact us to discuss your optimum solution.

Products for Hydrogen Purity Analysis

Process Insights' analyzers offer detection limits that are ideally suited for the contaminant limits set by SAE and ISO hydrogen purity standards and fulfill the requirements for analytical techniques outlined in ISO 21087. All Tiger Optics systems are also optimized for H_2 analysis according to ASTM Standard Test Method D7941/7941M.

Ensuring Contamination Control Throughout the Hydrogen Supply Chain

Summary of SAE/ISO Requirements and Analyzer Detection Limits


Impurity	SAE J2719/ISO 14687 Concentration Limit	Process Insights LDL (3σ)	Process Insights Analyzer(s)
Helium (He)	300 ppm	0.5 ppm	MAX300-LG
Nitrogen (N ₂)	300 ppm	1.0 ppm	MAX300-LG
Argon (Ar)	300 ppm	0.02 ppm	MAX300-LG
Methane (CH ₄)	100 ppm	0.2 ppm 0.1 ppm 1.0 ppm	Spark CH ₄ Prismatic 3 MAX300-LG
Moisture (H ₂ O)	5 ppm	0.0075 ppm 0.1 ppm	Spark H ₂ O Prismatic 3
Oxygen (O ₂)	5 ppm	0.003 ppm 1.0 ppm	HALO OK MAX300-LG
Carbon Dioxide (CO ₂)	2 ppm	0.4 ppm 0.32 ppm	Spark CO ₂ Prismatic 3
Carbon Monoxide (CO)	0.2 ppm	0.05 ppm 0.05 ppm	HALO 3 CO Prismatic 3
Formaldehyde (CH ₂ O)	0.2 ppm	0.006 ppm 0.02 ppm	HALO 3 CH ₂ O MAX300-LG
Formic Acid (CH ₂ O ₂)	0.2 ppm	0.02 ppm	MAX300-LG
Ammonia (NH ₃)	0.1 ppm	0.0004 ppm 0.01 ppm	HALO 3 NH ₃ Prismatic 3
Total Hydrocarbons, ex. CH ₄	2 ppm	0.05 ppm	iMOv
Total Sulfur	0.004 ppm	0.002 ppm	iMOv
Total Halogenated Compounds	0.05 ppm	0.01 ppm	MAX300-LG

Process Insights Total Integrated Solution

In the past, a complete monitoring solution for H_2 purity, which can cover all species listed in SAE J2719 or ISO 14687, involved a complex setup using as many as seven different analyzers from multiple providers, with no integration.

Introducing Process Insights' total solution: It links products from its Extrel and Tiger Optics brands. Only three analyzers are required, and these can be fully integrated into one single-provider system.

Comparison: Traditional Lab Setup vs. Process Insights Total Solution

Spark H₂O • Spark CH₄ • Spark CO₂

CRDS Analyzers for Moisture, Methane and Carbon Dioxide

Performance

Operating range:See table belowDetection limit (LDL, 3σ/24h):See table belowSAE J2719/ISO 14687 LimitSee table below

Precision (1\sigma, greater of): \pm 0.75% or 1/3 of LDL

Accuracy (greater of): $\pm 4\%$ or LDL

Speed of response: < 3 minutes to 90%

Environmental conditions: 10°C to 40°C 30% to 80% RH (non-condensing)

Storage temperature: -10°C to 50°C

Gas Handling System and Conditions

Wetted materials: 316L stainless steel, 10 Ra surface finish

Gas connections: 1/4" male VCR

Inlet pressure: 10 - 125 psig (1.7 - 9.6 bara)Flow rate: $\sim 0.7 \text{ slpm (gas dependent)}$

Sample gases: Most inert, toxic, passive and corrosive matrices

Gas temperature: Up to 60°C

Dimensions & Weight

Standard sensor: $H \times W \times D \ 8.73 \times 8.57 \times 23.6 \text{ in } (222 \times 218 \times 599 \text{ mm})$ **Sensor rack** (fits up to two sensors): $H \times W \times D \ 8.73 \times 19.0 \times 23.6 \text{ in } (222 \times 483 \times 599 \text{ mm})$

Standard sensor weight: 32 lbs (14.5 kg)

Electrical & Interfaces

Platform Max Series analyzer

Alarm indicators: 2 user programmable, 1 system fault, Form C relays

Power requirements:90 - 240 VAC, 50/60 HzPower consumption:40 Watts max. per sensorSignal output:Isolated 4-20 mA per sensor

User interfaces: 5.7" LCD touchscreen, 10/100 Base-T Ethernet, USB, RS-232,

RS-485, Modbus TCP (optional)

Data storage: Internal or external flash drive

Certification: CE Mark

Performance, H ₂	Part Number	Range	LDL (3σ)	SAE/ISO Limit
Spark H ₂ O	F7700	0 – 1750 ppm	7.5 ppb	5 ppm
Spark CH ₄ (standard range)	F7701	0 – 80 ppm	7.5 ppb	100 ppm
Spark CH ₄ (high range)	F7701-H	0 – 1000 ppm	200 ppb	100 ppm
Spark CO,	F7704	0 – 2000 ppm	400 ppb	2 ppm

Tige optics

HALO 3 NH₃ • HALO 3 CH₂O • HALO 3 CO

CRDS Analyzers for Ammonia, Formaldehyde and Carbon Monoxide

Performance

Operating range:See table belowDetection limit (LDL, 3σ/24h):See table belowSAE J2719/ISO 14687 LimitSee table below

Precision (1 σ , greater of): \pm 0.75% or 1/3 of LDL

Accuracy (greater of): $\pm 4\%$ or LDL

Speed of response: < 3 minutes to 90%

Environmental conditions: 10°C to 40°C 30% to 80% RH (non-condensing)

Storage temperature: -10°C to 50°C

Wetted materials: 316L stainless steel, 10 Ra surface finish

Gas connections: 1/4" male VCR

Leak tested to: 1 x 10⁻⁹ mbar I / sec

Inlet pressure: 10 – 125 psig (1.7 – 9.6 bara)

Flow rate: ~1 slpm
Gas temperature: Up to 60°C

Dimensions & Weight

Standard sensor: $H \times W \times D \ 8.73 \times 8.57 \times 23.6 \text{ in } (222 \times 218 \times 599 \text{ mm})$ Sensor rack (fits up to two sensors): $H \times W \times D \ 8.73 \times 19.0 \times 23.6 \text{ in } (222 \times 483 \times 599 \text{ mm})$ Standard sensor weight: $33 \text{ lbs } (15 \text{ kg}) \text{ for NH}_3 \text{ and CH}_2O, 28 \text{ lbs } (12.7 \text{ kg}) \text{ for CO}$

Electrical & Interfaces

Platform: Max Series analyzer

Alarm indicators: 2 user programmable, 1 system fault, Form C relays

Power requirements: 90 – 240 VAC, 50/60 Hz

Power consumption: 40 Watts max.

Signal output: Isolated 4–20 mA per sensor

User interfaces: 5.7" LCD touchscreen, 10/100 Base-T Ethernet, USB, RS-232,

RS-485, Modbus TCP (optional)

Data storage: Internal or external flash drive

Certification: CE Mark

Performance in H ₂	Part Number	Range	LDL (3σ)	SAE/ISO Limit
HALO 3 NH ₃ :	F7617	0 – 6 ppm	0.4 ppb	0.1 ppm
HALO 3 CH ₂ O:	F7618	0 – 40 ppm	6 ppb	0.2 ppm
HALO 3 CO:	F7602	0 - 2500 ppm	50 ppb	0.2 ppm

Tige tics

HALO OK

CRDS Trace Oxygen Analyzer

Performance O, in H,

Operating range: 0 – 10 ppm

 Detection limit (LDL, 3σ/24h):
 3 ppb

 SAE J2719/ISO 14687 Limit
 5 ppm

Precision (1\sigma, greater of): \pm 0.75% or 1/3 of LDL

Accuracy (greater of): $\pm 4\%$ or LDL

Speed of response: < 3 minutes to 95%

Environmental conditions: 10°C to 40°C 30% to 80% RH (non-condensing)

Storage temperature: -10°C to 50°C

Gas Handling System and Conditions

Wetted materials: 316L stainless steel, 10 Ra surface finish

Gas connections: 1/4" male VCR

Leak tested to: 1 x 10⁻⁹ mbar l / sec

Sample inlet pressure: 10 – 125 psig (1.7 – 9.6 bara) **Sample flow rate:** 0.5 to 1.8 slpm (gas dependent)

Gas temperature: Up to 60°C

Dimensions & Weight

Standard sensor: $H \times W \times D \ 8.73 \times 19.0 \times 23.6 \text{ in } (222 \times 483 \times 599 \text{ mm})$

Standard sensor weight: 45 lbs (20.4 kg)

Electrical & Interfaces

Platform Max Series analyzer

Alarm indicators: 2 user programmable, 1 system fault, Form C relays

Power requirements: 90 – 240 VAC, 50/60 Hz

Power consumption: 200 Watts max. **Signal output:** Isolated 4–20 mA

User interfaces: 5.7" LCD touchscreen, 10/100 Base-T Ethernet, USB, RS-232,

RS-485, Modbus TCP (optional)

Data storage: Internal or external flash drive

Certification: CE Mark

Part Number: F7502-H

U.S. Patent # 7,277,177 • U.S. Patent # 7,255,836

Prismatic[™] 3

Multi-Species Gas Analyzer

Performance

Operating range:See table belowDetection limit (LDL, 3σ/24h):See table below

Precision (1\sigma, greater of): \pm 0.75% or 1/3 of LDL

Accuracy (greater of): $\pm 4\%$ or LDL

Speed of response: < 5 minutes to 95% (in 4-channel operation) **Environmental conditions:** 10°C to 40°C 30% to 80% RH (non-condensing)

Storage temperature: -10°C to 50°C

Wetted materials: 316L stainless steel, 10 Ra surface finish

Gas connections: 1/4" male VCR inlet and outlet

Leak tested to: 1 x 10⁻⁹ mbar l / sec

Inlet pressure:10 - 125 psig (1.7 - 9.6 bara)Flow rate:< 1 slpm (gas dependent)</th>Sample gases:Inert gases and hydrogen

Gas temperature: Up to 60°C

Dimensions & Weight

Standard sensor: $H \times W \times D \ 8.73 \times 19.0 \times 23.6 \text{ in } (222 \times 483 \times 599 \text{ mm})$

Sensor rack: 19" rack-mountable (483 mm) **Standard sensor weight:** 50 lbs (22.7 kg) estimated

Electrical & Interfaces

Alarm indicators: 1 user programmable per channel, 1 system fault,

Form C relays

Power requirements: 90 – 240 VAC, 50/60 Hz

Power consumption: 300 Watts max.

Signal output: Isolated 4–20 mA per sensor

User interfaces: 10.4" LCD touchscreen, 10/100 Base-T Ethernet, RS-232, RS-485

Data storage: Internal or external flash drive

Performance in H ₂	Range	LDL (3σ)	SAE/ISO Limit
Methane (CH ₄):	0 – 100 ppm	100 ppb	35 ppb
Moisture (H ₂ O):	0 – 25 ppm	100 ppb	35 ppb
Carbon Monoxide (CO):	0 – 500 ppm	50 ppb	30 ppb
Carbon Dioxide (CO ₂):	0 – 1000 ppm	320 ppb	110 ppb

Tige tics

MAX300-LG

Mass Spectrometer for He, N₂, Ar, CH₄, O₂, CH₂O & CH₂O₃

Performance

Operating range:See table belowDetection limit (LDL, 3σ/24h):See table belowSAE J2719/ISO 14687 LimitSee table below

Precision (1\sigma): \pm 0.05% relative over 24 hours **Stability (1\sigma):** \pm 0.5% relative over 30 days

Analysis rate: 0.005–16 sec per component (user selectable) **Environmental conditions:** 13°C to 27°C 0% to 90% RH (non-condensing)

Maintenance and Calibration

Analyzer: 1–3 year* Roughing pump: 6–12 months*

Calibration interval: 3–12 months (manual or fully automated)

Filaments: Two—one active, one spare with automated switchover

Dimensions & Weight

Instrument: $H \times W \times D \ 23.0 \times 26.25 \times 19.0 \ \text{in} \ (584 \times 667 \times 483 \ \text{mm})$ **with optional cart:** $H \times W \times D \ 53.75 \times 38.25 \times 24.0 \ \text{in} \ (1365 \times 972 \times 610 \ \text{mm})$

Instrument weight (approx.): 165 lbs (75 kg)
Optional cart weight: 40 lbs (18 kg)

Electrical & Interfaces

Power requirements: 110 VAC ±10% 60Hz, 10A circuit or 230 VAC ±10% 50Hz, 10A circuit

Power consumption: 700 Watts nominal **System control interfaces:** Ethernet, USB

External communication: Ethernet, Modbus serial, Digital I/O, analog I/O, OPC

Software: Questor5 Quantitation Software

Performance in H ₂	Range	LDL (3σ)	SAE/ISO Limit
Helium (He):	0 - 100%	0.5 ppm	300 ppm
Nitrogen (N ₂):	0 - 100%	5 ppm	300 ppm
Argon (Ar):	0 - 100%	0.02 ppm	300 ppm
Methane (CH ₄):	0 - 100%	1.0 ppm	100 ppm
Oxygen (O ₂):	0 - 100%	1.0 ppm	5 ppm
Formaldehyde (CH ₂ O):	0 - 100%	0.02 ppm	0.2 ppm
Formic Acid (CH ₂ O ₂):	0 - 100%	0.02 ppm	0.2 ppm

^{*}Application dependent

iMOv

Gas Chromatograph for Total Hydrocarbons and Sulfur Compounds

Performance

Operating range:See table belowDetection limit (LDL):See table belowSAE J2719/ISO 14687 LimitSee table below

Instrument Configuration

Sample gas: Hydrogen Carrier gas: Helium

Detectors: Scalable enhanced plasma discharge detector (SePdd)

Enhanced flame ionization detector (eFID)

Sample pressure: 5–15 psig

Carrier/actuation gas pressure: 90–100 psig / 60–80 psig

Gas connection: LipLOK™ (backward compatible with double ferrule standard)

Chassis configuration: 19" rackmount or benchtop

Electrical & Interfaces

Power requirements: 120/220 VAC, 50/60 Hz

Standard I/Os: RS-232, 1x digital input, 1x digital output, ethernet (remote

control, IIoT)

Optional I/Os: Modbus, isolated 4-20 mA outputs, dry contact relays **User interface:** Embedded GC software with touchscreen interface

Compliance: CE mark and ROHS

Performance in H ₂	Range	LDL (3σ)	SAE/ISO Limit
Total Hydrocarbons (THC):	0 – 20 ppm	50 ppb	2 ppm
Hydrogen Sulfide (H ₂ S):	0 – 1 ppm	2 ppb	4 ppb*
Carbonyl Sulfide (COS):	0 – 1 ppm	2 ppb	4 ppb*
Methyl Mercaptan (CH ₃ SH):	0 – 1 ppm	2 ppb	4 ppb*
Ethyl Mercaptan/Carbonyl Disulfide (C ₂ H ₅ SH/CS ₂):	0 – 1 ppm	2 ppb	4 ppb*
Isopropyl Mercaptan (C ₃ H ₈ S):	0 – 1 ppm	2 ppb	4 ppb*
Thiophene (C ₄ H ₄ S):	0 – 1 ppm	2 ppb	4 ppb*

^{*}Limit is given as Total Sulfur

Advanced Spectroscopic Solutions for Fuel Cell Hydrogen Analysis

Process Insights Single-Species Systems

Process Insights Multi-Species Systems

MAX300-LG

References

ASTM Standard D7941 / D7941M-14, "Standard Test Method for Hydrogen Purity Analysis Using a Continuous Wave Cavity Ring-Down Spectroscopy Analyzer," available from ASTM International, http://www.astm.org/Standards/D7941.htm

SAE J2719, "Hydrogen Fuel Quality for Fuel Cell Vehicles," available from the Society of Automotive Engineers, https://www.sae.org/standards/content/j2719_202003/

ISO 14687-2019, "Hydrogen fuel – Product specification," available from the International Organization for Standardization," https://www.iso.org/standard/69539.html

ISO 21087-2019, "Gas analysis – Analytical methods for hydrogen fuel – Proton exchange membrane (PEM) fuel cell applications for road vehicles," https://www.iso.org/standard/69909.html

PREMIUM INSIGHTS – GAIN REAL-TIME INSIGHT INTO YOUR PROCESS

Process Insights' products and solutions deliver innovative and differentiated analysis and measurement solutions and technologies that add high value to our customers and protect the environment.

Our commitment is to deliver smart and affordable innovation that optimizes process, improves safety, and transforms our world.

CENTERS OF EXCELLENCE

PROVIDING PROVEN SOLUTIONS FROM A GLOBAL TECHNOLOGY LEADER

Tiger Optics

275 Gibraltar Road Horsham, PA 19044 USA +1 215 656 4000 www.tigeroptics.com sales@tigeroptics.com service@tigeroptics.com

Extrel CMS

575 Epsilon Drive
Pittsburgh, PA 15238 USA
+1 412 963 7530
www.extrel.com
info@extrel.com
support@extrel.com

Process Insights - The Americas

4140 World Houston Parkway Suite 180 Houston, TX 77032 USA +1 713 947 9591 info@process-insights.com

Process Insights – EMEA

ATRICOM Lyoner Strasse 15 60528 Frankfurt Germany +49 69 20436910 info@process-insights.com

Process Insights - APAC

Wujiang Economic and Technology Development Zone No. 258 Yi He Road, 215200 Suzhou Jiangsu Province China +86 400 086 0106 info@process-insights.com

OUR PREMIUM GLOBAL BRANDS

www.process-insights.com Copyright © 2022 Process Insights, Inc. All Rights Reserved.